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This is the third report on the second phase of the project to apply geostatistics
to remote imagery. The main focus of this period of work has been to apply the
geostatistical technique of kriging to the image information for Fort Benning in
different ways. The first section describes how the kriging equations can be used to
optimize sampling effort. The results of this will relate to the last phase of work for
this contract on data compression. They show how the estimation variance increases
as the grid spacing increases or the number of data retained decreases. Ordinary
kriging was used to map the data for Channels 2, 3 and NDVI to produce contour
maps. The aim eventually is to assess how well the categories in these maps reflect
the different classes of ground cover. The image data were finally filtered by kriging
the long and the short range components in the vegetation. The maps of the short
range component show the local rate of change in the pattern of ground cover while
those of the long range component show the extent of the major patches of different

kinds of ground cover.
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ABSTRACT

This is the third report on the second phase of the project to apply geostatistics to
remote imagery. We have applied different aspects of kriging to the image informa-
tion for Fort Benning. The first section describes how the kriging equations were
used to optimize sampling effort. The results show how the estimation variance in-
creases as the grid spacing increases or the number of data retained decreases. This
will have implications for the last phase of work for this contract on data compres-
sion. Ordinary kriging was used to map the data for Channels 2 and 3 and NDVI to
produce contour maps. The aim eventually is to assess how well these maps reflect
the different classes of ground cover. The image data were finally filtered by kriging
the long- and the short-range components in the ground cover. The maps of the
short-range component show the local change in the pattern of ground cover while
those of the long range component show the extent of the major patches of different
kinds of the cover.

INTRODUCTION

This report covers an investigation to explore kriging of the SPOT image for the
part of Fort the Benning being studied. First we describe kriging and how it has
been used to show the likely estimation variances for different sampling intensities in
relation to the three wavebands. The kriging equations enable sampling schemes to
be designed when the variogram is known and before collecting any data. The pixel
values for channels 2 (Red, R), 3 (Infra-red, I) and for the normalized difference
vegetation index, NDVI = (I - R)/(I + R), were also kriged to obtain a choropleth
map. The aim of kriging pixel data is twofold: to remove some of the noise from the
image and to remap the information based on isarithms chosen to match the likely
reflectance of the vegetation. A more effective way of removing noise than ordinary
kriging is to filter the pixel information by a kriging analysis. In the previous project
we detected two marked scales of spatial variation in the image from the variogram
analysis. The variogram showed that there was a short-range variation of about 9
pixels long (180 m) and a much longer one of about 150 pixels (3 km). We filtered
the image according to these spatial scales by kriging the short and the long spatial
components independently.

The theory of kriging and its relation to optimal sampling is described, and the
theory of the kriging analysis to filter data is also given.

GEOSTATISTICAL THEORY

In geostatistics the values zy(x) of any variable, u, distributed in space are regarded
as constituting a particular realization of a random variable Z,(x), where (x) denotes
the spatial co-ordinates in one, two or three dimensions. The random variable is
usually autocorrelated at some scale, and it may be correlated with one or more other
random variables, v,...,. Characterizing the variable and analysing measurements
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of it build more or less elaborately on this basic assumption. For the present purpose
we confine ourselves to linear models. Further, each variable is treated independently
in this study.

Linear model.

We assume a simple model of a spatially correlated random variable:
Z(x) = p+e(x), 1

where g is the mean of the process, and €(x) is another random variable with a
mean of zero and variogram v(h) where h is the lag.

If we assume the intrinsic hypothesis, namely that the expected differences be-
tween the values at x and x +h is 0 and their variance depends only on h then y(h)
is also the variogram of Z(x).

Characteristics of kriging

At its simplest kriging is a method of local weighted moving averaging of the observed
values within a neighbourhood V. Weights are allocated to the sample data within
the neighbourhood of the point or block to be estimated. The weights depend on
the structure of the variation of the property, defined by the variogram model, and
the configuration of the sampling sites. The weights are allocated so as to minimize
the estimation variance, or kriging variance, and the estimates are unbiased. Hence,
in this sense, kriging is an optimal estimator. Kriging is also an exact interpolator
in the sense that the kriged value at a sampling site is the observed value there, and
the estimation variance is zero. Kriging can be done at points or over areas (blocks).
In the analysis that we report here we regarded each pixel in the image from Fort
Benning as a point and used punctual kriging.

Theory of Linear kriging

In the usual situation a kriged estimate, Z (x0), is a weighted average of data,
z(x1), 2(X2), . . ., 2(%nN):

= N
Z(x0) = Z)\ﬂ(xi), (2)

where ); are the weights.
To ensure that the estimates are unbiased the weights are made to sum to 1:

N
Z. /\?'Z(Xi) = 1.

i=1

We also want to minimize the estimation variance, which is given by

va,r[Z(xo)] = E[{z(xo) — Z(x0)}?]
N N N
= 2 Z /\i’Y(xh Xo) - Z Z )\i)\ﬂ(xi, Xj) ’ (3)
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where (x;, ;) is the semivariance of Z between points x; and x;, and y(x;,Xo)
is the semivariance between the ¢th datum and the point for which the estimate is
required.

In ordinary kriging the mean of the random variable, p, is unknown. The esti-
mation variance of Z(xg) is minimized, subject to the non-bias condition, when

N
Z/\ﬂ(xi,xj)-i‘l/)(xo) = ~v(xj,%0) forall j
i=1

N

S dyx) = 1. (4)

i=1

These are the kriging equations. The quantity ¥(Xo) is a Lagrange multiplier, which
is introduced to achieve the minimization. The kriging variance is then obtained
from

N
ol = Z/\ﬁ(xi,xo) + 9(xo) - (5)

OPTIMAL SAMPLING

The estimation variance for kriging depends only on the variogram and the config-
uration of sampling points and not on the measured values. This means that if the
variogram is known then the estimation variances can be determined for any desired
sampling configuration before the sampling is done. Therefore, we should be able to
design a sampling scheme to meet a specified tolerance or precision for a property.
We may or may not have data at this stage. In this case we had the image data, but
for field work or to sample the image for data compression we want to minimize the
ground-based sampling or the number of data retained according to the estimation
variance (the square of the standard error) that we can tolerate.

We determined the models for the variograms previously. They were all isotropic
double exponential, with equation

7(h) = co+cr{l —exp(—h/a1)} + c2{1 — exp(=h/az)}, (6)

in which ¢, is the nugget variance, ¢; and ¢; are the sills of the short-range and
long-range components respectively, and a; and a; are the corresponding distance
parameters. The values of the parameters are given in Table 1. Using these models
we formed the punctual kriging system, Equations (4), and solved it to determine
the punctual kriging variances by Equation (5) at the centres of grid cells for grid
sizes of 4, 8, ...,. These are the largest variances associated with the reconstruction
of the images from sampling at the intervals 4, 8, ...,.

One might wish to discover the minimum number of pixels to retain and still
maintain a sufficiently small error, an acceptable tolerance. For this we plotted the




Table 1: Variogram model parameters for the three channels and NDVI

Co (5] Co ay as
Channel variance variance variance pixels pixels
1 — rows 0 35.74 43.95 2.83 28.61
— columns 0.88 44.92 45.92 3.76  61.67
— average 0 40.84 42.71 3.26 38.87
2 - rows 0 0.0213 0.0904  2.19 44.67
— columns 0 0.0329 0.0854 4.49 79.00
— average 0 0.0262 0.0845  3.23 53.36
3 — rows 0 0.0105 0.0467 1.76  52.91
- columns 0 0.0130 0.0335 3.03 5247
— average 0 0.0115  0.0400 2.33 51.92
NDVI
— TOWS 0 0.00406 0.00942 4.51 70.45
- columns 0 0.00422 0.00569 5.24 38.85
— average 0 0.00428 0.00725 5.06 55.80

NB The distance parameters of the variograms can be multiplied by 3 to obtain
the approximate range of spatial dependence.

estimation variances against grid spacing for the three wavebands, Figure 1, from
which the sample spacing can be read for any specific tolerance.

We do not know what error is tolerable in this instance. Nevertheless, from
the graphs it is clear how the estimation variance increases rapidly with increased
sample spacing, or equivalently a smaller sample. For data compression, which we
shall deal with in the final report, the graphs illustrate at the outset the kind of
estimation variances or standard errors we shall incur by removing information.

Results of optimal sampling analysis
Channel 1

The graph of the estimation variances plotted against grid spacing in numbers of
pixels for channel 1 has a very steep initial slope. This results from the short-range
component of the variogram. The pixel map of channel 1 shows that the short range
variation is dominant. If a variance of 50 is chosen for the tolerance, which is 62.5%
of the upper limit of the variance in this graph, then a sampling interval of 9 pixels
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would be needed. Hence, estimates based on this sampling interval would have a
considerable error even though the sampling interval or reduction in data would be
fairly small. For the vegetation survey in the previous project we recommended a
minimum sampling interval of 150 m (7.5 pixels) which would give an estimation
variance of about 38, about 50% of the total variance. With a sampling interval of
more than 60 pixels (1500 m) for channel 1, which was the maximum sampling inter-
val, we recommended for sampling the long-range component there would be little
spatial dependence in the data. This graph confirms our earlier recommendations.
It also shows the importance of an objective approach to sampling for interpolation
or data reduction.

Channel 2

The initial slope of this graph is also steep. Later it becomes more gradual. The
variances this time are for the data transformed to logarithms. This suggests that
the short- and long-range components are both important for this waveband. The
pixel map of this channel appears less noisy than that of channel 1. For a spacing
of 7.5 pixels the estimation variance would be 30%, and for one of 45 pixels 60%.

Channel 3

This graph has the gentlest slope, although it is still steep near to the origin arising
from the short-range component of the variation. A sampling interval of 7.5 pixels
would result in an estimation variance of 30% of the total, whereas for a 50-pixel
sampling interval it would be 60% for the long-range component.

Channels 2 and 3 (Red and Near Infra Red) are the ones we expect to be most
closely related to the vegetation. They are also similar to each other and express a
similar degree of variation.

Summary

Figure 1 shows the maximum estimation variances that would result when recon-
structing images from sampling the image for data reduction. Clearly it depends
on the variation in the data. These graphs also show the effect of the two scales of
variation on the sampling interval needed to resolve the variation present.
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KRIGING

For this part of the project we have been examining the best way of smoothing or
removing noise from the pixel information for mapping. The simplest approach was
to use ordinary kriging for the reflectance values of channels 2 and 3 and for NDVI
(the standardized vegetation index). We used the double exponential model of the
raw data for each to these variables and kriged the raw data on a grid that was
offset by 0.5 of a pixel in both the north-south and east-west dimensions; this was
to avoid estimating at the data points, which would have been useless. We used the
raw data so that TEC can make comparisons between the isarithmic intervals and
the reflectance values for the classes of vegetation. We kriged both at intervals of 1
and 2 pixels. We drew only the maps of the latter estimates because there was little
benefit in using the more detailed estimates.

For kriging we had to subdivide the area because of its irregular shape. With
such a fine grid we had large areas in the rectangle that were blank, and no estimates
were produced for the bottom third of the study area. In this report the maps of the
top part of the image are included, although the others have been made available
to Mr Slocum.

Results of ordinary kriging

For channels 2 and 3 (R and I, respectively), Figures 2 a and 3 a, the isarithmic
intervals were chosen to correspond with the average reflectance for the different
classes of vegetation suggested by TEC. This was more straightforward for channel
2 because the spectral values seemed to match those of the vegetation closely. This
waveband also had the largest correlation with the vegetation values when they were
compared in the previous project. The reflectance values associated with the ground
cover classes for Channel 2 are given in Table 2.

The general appearance of the maps for Channels 2 and 3 is similar, especially for
the large reflectance values over the open spaces and roads. The major differences
in the pattern are in the south west. Here there appear to be differences in the
short-range variation picked up by the different sensors. In both cases the swampy
areas associated with the Ochillee Creek show up clearly with the blue shading. Also
Kings Pond is clearly visible on both maps (Figures 2 a and 3 a).

The map for NDVI (Figure 4 a) is somewhat different from the others: the high
reflectance areas (small NDVI) are more clearly defined. It appears to contain more
detail of the variation. The map is more similar to that of Channel 3 than that of
the other channels, suggesting that NDVI reflects the pattern in the Infra-red more
than in the red, even though it is slight. This is more apparent in the kriged maps of
the southern part of the region, Figures 2 b, 3 b and 4 b. For Channel 3 and NDVI
the western and eastern halves of the map appear very different. This distinction is
also present further North, but it is less clear. It seems to follow the physiography,
with the boundary following more or less the western edge of the Branch valley.

In all of the kriged maps the short- and long-range components of the variation
are clearly visible. These maps need to be validated now against the field data




Table 2: Average reflectance values associated with ground cover class for channel 2

Ground cover class  Reflectance Value
Water 24.0
Pine/Hardwood Wet 25.0
Hardwood/Pine Wet 25.9
Brush 26.1
Pine/Hardwood 26.3
Hardwood Wet 26.5
Pine/Plantation 27
Longleaf Pine 28
Oak/Pine 29
Open space 30

that were collected in the Autumn of 1995 by TEC. We did not have these data
available for comparison. The next stage is for the team at TEC to compare the
kriged maps with the ones of the classification of ground cover to see which is better
for predicting ground cover.

KRIGING ANALYSIS

The variogram may be just one simple structure, or it may be the sum of two or
more structures, one nested inside the other, and each with its own scale, thus

7(h) = ~'(h) ++*h)... , (7

where the superscripts refer to the separate structures. This matches the real world
in which factors such as relief, geology, tree-throw, fauna, and man’s divisions into
fields and farms operate on their own characteristic scales.

If we assume that the pocesses are uncorrelated then we can represent Equa-
tion (2) by the sum of K basic variograms:

K
y(h) = ) ¥g*(h), (8)
k=1
where g¥(h) is the kth basic variogram function and b* is a coefficient that measures

the relative contribution of gF(h) to the sum. This then is our linear model of
regionalization.
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Identifying the spatial structures.

Working from sufficient data we can attempt to identify the separate spatial struc-
tures. We first compute the experimental variogram, for which the usual estimator
is

A(h =mz{zx, S+ )P )

=1

where z(x;) and z(x + h) are observed values of Z, and m(h) is the number of
paired comparisons at lag h. Changing h gives the experimental variogram, to
which must be fitted a legitimate variogram function. In practice, we find that most
experimental variograms require a nested model to describe them accurately and
that we do have to combine two or more basic functions, as in Equations (7) and (8).
The nested model we used below includes two exponential functions, Equation (6),
but without the nugget. '

Kriging analysis.

Once distinct spatial structures have been identified in the variogram we can try to
separate their sources. This is effectively filtering. It enables us to isolate specifically
local or regional sources of variation and, thereby, interpret them more easily than
when they are combined. For image data which are complex separating out the
different sources of variation helps to show the spatial structure present at the
different scales, and it reduces the noise. It is done by what Matheron (1982) called
‘kriging analysis’, and it is based on the decomposition of Z(x) into the sum if K
separate orthogonal random functions Z*(x),k = 1,2,..., K, each with its basic
variogram g*(h) of Equation (8):

Z(x) = kZK;Z’“(x) +p, (10)
such that
E[Z¥x)] =
and
SE{Z*(x) - ZF(x+ W)}H{Z¥ (x - Z¥ (x+ h)}] = b'gF(h) if k=F

= 0 otherwise. (11)

Relation (11) expresses the mutual independence of the K random functions
Z*(x). With this assumption, the nested model (8) is easily retrieved from rela-
tion (10). We assume that Z(x) is second-order stationary, which accords with the
results above. The Z¥(x) are the spatial components, and they represent the be-
haviour of Z(x) at the spatial scales defined by the distance parameters of the basic
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variogram functions, g¥(h). In practice each spatial component is estimated as a
linear combination of the observations z(x;):

Z*x0) = Y Mz(x), (12)
i=1
where n is the number of observations, z(x;),7 = 1,2,...,n, used for the estimation,
and the AF are the weights assigned to the observations.
The n weights are chosen to ensure that the estimate is unbiased and that the
estimation variance is minimal. This leads to the kriging system:

3 O My(xix) =9 = bgf(xi,xo) forall i=1,2,...,n,
=1

X o= 0. (13)
j=1

This system is is solved to find the weights, A}, to insert into Equation (12). The
quantity 1 is a Langrange multiplier. From Equation (10), E[Z*(x)] = 0, and so
the weights sum to 0 to assure unbiasedness, not to 1 as in the ordinary kriging
formulation, system (4).

To account for local non-stationarity the kriging is usually done in fairly small
moving neighbourhoods centred on xg. Then it is necessary only that Z(x) is locally
stationary, or quasi-stationary, so that Equation (10) can be rewritten as

K
260 = 20 +u(x) (14)
k=1

where p(x) is a local mean which can be considered as a long-range spatial com-
ponent. Matheron (1982) has shown that this relation is also verified in terms of
estimators, i.e.

K
Z2(x) = Y ZHx) + i) . (15)
k=1
The local mean is estimated as a linear combination of the observations z(x;):
Axo) = D Xz(x;) - (16)
j=1

The weights are obtained by solving the kriging system:

Z)\j'y(x;,x;)—zﬁ 0 foral i=1,2,...,n,
i=1

S -

10
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Estimation of the long-range component, i.e. the local mean p(x) and the spa-
tial component with the largest range, can be affected by the size of the moving
neighbourhood, see Galli et al. (1984). In fact, to estimate a spatial component
with a given range, the diameter of the neighbourhood should be at least equal
to that range. It frequently happens when the sampling density and the range
are large that there are so many data within the chosen neighbourhood that only
a small proportion of them is retained. Although modern computers can handle
many data at a time, the number of data used must be limited to avoid instabilities
when inverting very large covariance matrices. Further, even if all the data could be
retained, only the nearest ones contribute to the estimate because they screen the
more distant data. Consequently, the neighbourhood actually used is smaller than
the neighbourhood specified, which means that the range of the estimated spatial
component is smaller than the range apparent from the structural analysis. Galli
et al. (1984) recognized this, and where data lie on a regular grid they proposed
using only every second or every fourth point to cover a large enough area but still
with sufficient data. Such selection is somewhat arbitrary, and we have adopted
an alternative proposed by Jaquet (1989) which involves adding to the long-range
spatial component the estimate of the local mean.

11
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Results of the kriging analysis: filtering
Short range

For Channel 2 (R), Figure 2 c, the detailed local variation associated with erosion
in the area of McKenna Hill shows clearly. This area has large reflectance values
because it has been cleared of vegetation. The roads are also distinct, as are the
other areas that have been cleared. The short-range variation in the vegetation is
also evident. There appear to be two main classes of reflectance, but this depends to
some extent on the class intervals chosen. Essentially this map shows the main local
changes and where these can be expected from one ground cover class to another.
It is not possible to say what the type of cover is from this map at present.

The map, Figure 3 c, for Channel 3 (I) shows more detail in the short-range
variation. However, McKenna Hill does not stand out as clearly. There are now
three main reflectance groups in the vegetation. We need to discuss these maps
with Mr Slocum to discover their meaning. What is apparent is that the swamp in
the southern central part of the image is not evident at this scale. It is the local
variation within this that emerges.

The short-range map for NDVI, Figure 4 c, looks like a mixture of the maps for
R and I. However, there is more detail in the vegetated areas.

Long range

The long-range structures in the three maps, Figures 2 d, 3 d and 4 d, are very
clear. This suggests that kriging with the long-range filter removes the local noise
and shows the extent of the major ground cover classes. These maps are all different
in the finer detail, but McKenna Hill and the roads stand out in all. Channels 2 and
3 both pick out the wet areas in the central southern part of the maps. The yellow
areas on Figure 4 d for NDVI represent the wet areas, but they appear to be more
extensive than in the other two maps.

Summary

There is considerable detail evident on the map of the long-range component, and
from the point of view of environmental management at the broad scale these maps
should enable a manager to identify areas for monitoring or more detailed study.
The short-range maps could be of military value in that they show the amount of
change in ground cover to be expected at the local scale. The difference in these
scales is an order of magnitude. The local scale is around 150 m to 300 m and the
long-range 1.5 km to 3 km. These maps also reflect the kinds of spatial scale of
variation established from the image data in the first project and in the vegetation
classes from the transects. Final interpretation of these results will depend on further
information from TEC.

12




REFERENCES

Galli, A., Gerdil-Neuillet, F. & Dadou, C. 1984. Factorial kriging analysis: a
substitute to spectral analysis of magnetic data. In: Geostatistics for Nat-
ural Resource Characterization (eds G. Verly et al.), pp 543-557. D. Reidel,
Dordrecht.

Jaquet, O. 1989. Factorial kriging analysis applied to geological data from petroleum
exploration. Mathematical Geology, 21, 683-691.

Matheron, G. 1982. Pour une analyse krigeante de données régionalisées. Note
N-732, Centre de Géostatistique, Ecole des Mines de Paris, Fontainebleau.

13




"7 [euuey)) eare Apnjs
Suruueg 1104 jo jred uleYyIOU 10§ seyeunr)so poSuiy Areurpio jo dejy ‘e g oImSijy

0o¥ 0se 0oe 0S¢ 00¢ oGl 001 0g

0ve
0'Ge
6'GC
1'9¢
£9¢
G'9¢
0'Lc
0'8¢
0'6¢c
00c
0'0E




¢ [puuey) eare %mvﬂ—um
Sutuueg 3104 Jo jred uIeYInOs 10 soreunl)sd paSLLy Areurpio jo depy °q g 2Indig

0Se 00cC oSt 001

SN WY VY YOO T O O T OO O O O O O

ove mo3e N
0’62 -0'v2 B
6'62 - 0'Ge ]
1’92 - 6'62 N
€92 - 1'92 |
6’92 -€92
0'/2 -5'92
0'82 - 022
0’62 - 0'82
0'0€ -0’62
00E€ 3AOEY




G ?ZCKJC SEOdE ApLLgs DULLUD Y] iy JU picu

wIayjIou 2y} 10} SULILY[Y Ioyje sojeunl)se pafuy ofuel jioys jo depy 2 g o3y

0S¥y ooy 0S€ 00€ 0S¢ 00¢ 0St (0[0] 8

0¢c- MO13d
G- -0%¢
0} -G'I-
G0 -0'}-

00 -90

G0 -00

0L -90

St -0}

St 3AN08VY




' [PuuRy)) eale Apnjs suluuay 1104 jo
11ed uIoy}I0U O} I0] SULIS)[Y I93Je sojeuIr}se pagiiy aguel Suof jo dejy ‘p g omSL]

0S¥y 0oy 0Se 00€ 0S¢ 002 0st 001

002 MO8
0062 - 00'¥e
0092 - 00'Se
00'/2 - 00'92
00'82 - 00°22
00’62 - 0082
00°0E - 00'62
00'2E - 00°0€E
00'¥E - 00°2E
00'9€ - 00'¥E
00'8E - 00'9€
| Ca 00°0% - 00'8E
abuei Buo guo 000 3AOEY




‘¢ [Puuey)) eaIe Apnjs
Suruueg 110 Jo jred uloy}Iou 10§ sajewryse paduy Areurpio jo dey e g 2IngLg

oovy 0se 00€ 0S¢ 00¢ 0St 0]0]8 0S

0[0)4

T TTT

0sy

T T T 11

00s

q €YD

S0V
0y
Sy
V4
Gy
oey

Svy
o'sy
oSy

Sov
Oy
Sy
ocy
Sev
oey
Gey




¢ [puteyn

:eore Apnjys

Suruuag j104 Jo jed UILYINOS IO} sojeuIr}se padiry Areurpio jo dely °q ¢ oImdig

00c 0S1

00t

SOV
O’y
S
0cy
G'cy
o'ey
Gey

S
0'SY
0'SY




) \\\\\\Q
R 5 S

Sy SN 8
NN NS
S s \\\\\\%\\\\\ NN

NS N 3 . s X ;

? . '\\ - ..,\“\\Q‘\\\\\ N Q. \\\\“‘

S \\‘\\N s N i

. o WNRE A e N OE o

Ch 3 Short range

RN NS - S
2 AN X ‘ ; N

N

\‘\\\t\\\_‘\ﬁz_ﬁ§ R

R
R

LN
SINE
_

W)
T
»

R
& NER
NS

OO WOoOWwWOoOWoo o o o
R2d8R38438888K8 S
T T ST T SRR SRR TS TR T
N OWNnH O wWw o oo O O
e8Ra83 B8RS

[ ] ABOVE

150 200 250 300 350 400 450

100

Figure 3 c. Map of short range kriged estimates after filtering for the northern

part of Fort Benning study area: Channel 3.
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